정상성 2

시계열 모델링 - ARIMA

"금융 파이썬 쿡북 Ch3. 시계열 모델링 "의 내용을 기반으로 작성하였습니다. (실습 깃헙) 1. ARIMA 상세 ARIMA 모델의 내용은 본 책과 고려대 김성범 교수님의 유튜브 강의를 참고하였다. (좋은 내용 공유 감사드립니다.) https://www.youtube.com/watch?v=ma_L2YRWMHI ARIMA는 데이터의 자기 상관을 설명하는 방법을 사용한다. 이는 ARMA(Autoregressive Moving Average) 모델을 확장한 것이다. ARIMA의 구성요소에 대해 살펴보자. AR (Autoregressive) 모델 관측값과 지연값 사이의 관계를 사용 모멘텀과 평균 회귀 효과를 반영 I (Integration) 시계열의 차분을 의미, 이전 기간의 값을 현재 기간의 값에서 차감해 ..

시계열 정상성 검정 & 교정

"금융 파이썬 쿡북 Ch3. 시계열 모델링 "의 내용을 기반으로 작성하였습니다. (실습 깃헙) 1. 정상성 정상성(stationary) 시계열이란 평균, 분산, 공분산 등의 통계적 속성이 시간에 대해 일정한 시계열을 의미한다. 이런 정상성은 미래에 대한 모델링과 예측을 정확하게 해주므로 시계열에서의 바람직한 특성이다. 반대로 비정상성 데이터의 몇가지 단점은 다음과 같다. 모델의 분산이 잘못 지정될 수 있다. 모델의 적합화를 악화시킨다. 데이터의 시간 - 의존성이라는 귀중한 패턴을 활용할 수 없다. 2. 정상성 검정 정상성 검정을 위해서는 아래 세가지 방법을 활용 및 구현하였다. 데이터는 이전 '시계열 분해' 에서 사용한 데이터와 동일하다. https://needmorecaffeine.tistory.com..